Positional Embeddings and Relative Attention
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Why should we care about relative attention?

- Paying attention to all the text is necessary
- However, in many cases, the important tokens are the same distance away.
- With relative attention, we can reinforce recurring relationships even with offsets!
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Why should we care about relative attention?

- Paying attention to all the text is necessary
- However, in many cases, the important tokens are the same distance away.
- With relative attention, we can reinforce recurring relationships!

- of course, absolute attention allows the formation of relative attention.
- But positional encodings help extra...
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Remember: matrices are linear transformations!

Rotate about origin

Shear in x direction
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When we multiply by a 2x2 matrix, we
are changing our basis from {(1,0),
(0,1)} to {(a, c), (b, d)}
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Where x is w, t, our only absolute position!
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Summary / final notes

Positional embeddings are added to each token embedding

- relative attention: if p,_,, p, ,, p,, were "is located in", pay lots of attention to p,,

- By using the positional embeddings of words, it becomes very easy for a
transformer to represent relative attention...
- Because p, ,, p,,, P, ; are simple linear transforms of p/!



